Tennessee Valley Authority, Post Office Box 2000, Soddy Daisy, Tennessee 37384-2000 January 25, 2010 10 CFR 50.73 U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D.C. 20555-0001 Sequoyah Nuclear Plant, Unit 2 Facility Operating License No. DPR-79 NRC Docket No. 50-328 Subject: Licensee Event Report 328/2009-002, "Manual Reactor Trip Because of Degrading Main Feedwater Pump Turbine Condenser Vacuum" The enclosed licensee event report provides details concerning a manual reactor trip and automatic engineered safety feature actuation of the auxiliary feedwater system. The manual reactor trip was initiated because of degrading main feedwater pump turbine condenser vacuum. This report is being submitted in accordance with 10 CFR 50.73(a)(2)(iv)(A), a condition that resulted in an manual actuation of the reactor protection system. Respectfully, Christopher R. Church Site Vice President Sequoyah Nuclear Plant Enclosure: cc: NRC Regional Administrator – Region II NRC Senior Resident Inspector - Sequoyah Nuclear Plant I Ea 2 MRR | NRC FO | ORM 3 | 66 | U.S | . NUCLE | EAR R | EGULA | TORY | COMMIS | SION | | | | MB NO. | | | | XPIRES (| | | |--|---|--|--|--|--|---|--|---|--|---|--|--|--|--|--|---|---|--|------------| | (9-2007) | | | | | | | | | | | | | | | | mandatory co
the licensing | | | | | | | | | • | | | | | | indus | stry. Se | end co | mments re | garding | burden estin | nate to the R
y Commission | ecords and | FOIA | /Privacy ` | | | | LICEN | SEE EV | 'ENT F | RÉPO | RT (L | ER) | | 1 | 0001 | 1, or by | intern | et e-mail to | o infocc | llects@nrc.go | ov, and to the
3150-0104), C | Desk Of | ficer, C | Office of | | | | (See re | | | • . | • | | | | Budg | get, Was | hingtor | n, DC 2050 | 3. Ifai | means used t | to impose an ir | nformation | collecti | on does | | | | | /charac | | | | | | | | | | | | | the NRC may
mation collection | | ici or s | sponsor, | | 4 (5 4 6) | LITY | | /Citatac | 1013 10 | Cac | II DIOCI | <u>``</u> | | | 2 00 | OCKE | T NILL | MBER | | 101 | DACE | | | | | 1. FACI | | ıam⊧
⊩Nuclear | Plant (| I (IAO2 | Unit 2 |) | | | | 2. DC | | | 00328 | | 3.1 | PAGE 1 | OF 5 | | | | | | - Nuclear | - | JQ14) | | | | | | | | | ~~~ | | | | | | | | 4. TITL | | - | - - 1 | | - 6 15 | | | 4-1- 5- | | | D | т | · | | | \ | | | - : | | | | Reactor | | | | | | | | ater | Pum | тр і | | | | | | | | | 5. E | VENT | DATE | ъ. | LER NU | | REV | 7. N | EPORT | JAIL | F/ | ACILITY | NAME | | HEK | FACILITIE | ES INVOLV | DOCKET | NUMBI | ER · | | MONTH | DAY | YEAR | YEAR | NUME | | NO. | MONTH | DAY | YEA | | | | , | | | | | | | | 11 | 26 | 2009 | 2009 | - 00 | 2 - | 00 | 01 | 25 | 201 | 0 1 | ACILITY | NAME | | | *, | | DOCKET | NUMBI | ER | | 9. OPE | RATIN | G MODE | 11. | THIS R | EPOR | T IS SU | вмітт | ED PURS | UANT | гтот | THE R | EQU | REMEN | TS O | F 10 CFR | §: (Check | all that a | apply, |) . | | | | | 20 | .2201(b) |) | | □ 2 | 0.2203(a |)(3)(i) | | .[|] 50 |).73(a)(2 |)(i)(C |) | <u> </u> | 73(a)(2) | vii) | | | | 1 | | == | .2201(d) | | | | 0.2203(a |)(3)(ii) | | Ē | _ |).73(a)(2 | | | | 73(a)(2) | | A) . | | | ' | | 20 | .2203(a) | (1) | | □ 2 | .0.2203(a |)(4) | | |] 50 |).73(a)(2 |)(ii)(B |) | <u> </u> | 73(a)(2) | viii)(E | 3) | | | | | | .2203(a) | | | | 60.36(c)(1 | | | <u> _</u> | _ |).73(a)(2 | | | | 73(a)(2) | |) | | 10. PO | WER L | EVEL | | .2203(a) | | | | 60.36(c)(1 | |) | ≥ | |).73(a)(2 | | | | 73(a)(2) | (x) | Ì | | | | Ţ | | .2203(a) | | | | 0.36(c)(2 | | _ | Ļ | |).73(a)(2 | | | | 71(a)(4) | | . ' | | | 30 | , , | | .2203(a) | | | | 60.46(a)(3 | | | ŀ | | 0.73(a)(2 | | | | 71(a)(5) | | | | | | : | | .2203(a)
.2203(a) | | | | 60.73(a)(2
0.73(a)(2) | | | _ | |).73(a)(2
).73(a)(2 | | | | HER
cify in Ab
ı NRC Fo | stract | below | | | | | | .2203(a) | (Z)(VI) | | | | | | | | | .)(V)(L | ') . | or ir | NRC Fo | rm 36 | 6A ' | | | | | | | | 12. | LICEN | SEE CON | HACI | FOR | THIS | LER | | | TELEBUON | IE NUMBER (| la alcada Aus | - C1 | | | NAME | س د | | | | | | | | | | | | | | TELEPHON | 423-84 | | | " | | Donal | a Suu | .O[1 | 13 COM | DI ETE | ONE | INE EO | R FAC | н сомр | ONEN | TFAI | LURE | DES | CRIBER | INT | HIS REPO | | | | | | | I | | | | | MANU- | | ORTABLE | | | : | | | | | MANU | , R | EPOR. | TABLE - | | CAUS | SE | SYSTEM | COM | IPONENT | | CTURER | | O EPIX | | CAUSE | E | S | YSTEM | CO | MPONENT | FACTUR | | TOE | , 14. | SUPPLE | MENTA | AL RE | ORT E | XPECT | ED | | | | | 15. EX | | | MONTH | DAY | | /EAR | | □ve | <u> </u> | | | NO [| | | | SUBN | IISSIC
ATE | ON | | | - | - | A1L | | | | | | | | | nit to 1400 s | | | | | | | | | | | | _ | | | | | | | | | vember | tripped following indication of degrading main feedwater pump turbine (MFPT) condenser vacuum. At | | | | | | | | | | | | | | | | | . At | | | ar | | approximately 0239 EST, the shift manager was notified of a degrading vacuum in the 2A MFPT | | | | | | | | | ding v | FPT | | , | | | | | | | | prox | - | 0239 E | ST, th | | | _ | | | | | _ | | | | | | | | | | oprox
onder | nser. Óp | 0239 E
eration | ST, th | nuall | y tripp | ed th | e react | or ar | nd er | ntere | d th | | | | | _ | | | | pr | oprox
onder
oced | nser. Óp
ures. Ti | 0239 E
eration
ne caus | ST, the
ns mai
se of t | nuall
his e | y tripp
vent v | ed th
vas d | e react
etermir | or ar | nd er
o be | ntere
the | ed th | sure of | two | isolatio | on valve | | | | | pr
le | oprox
onder
oced
vel s | nser. Óp
ures. Tl
witch on | 0239 E
eration
ne caus
the gla | ST, the second s | nuall
his e
al ste | y tripp
vent v
eam s | ed th
vas d
ysten | e react
etermir
n that ti | or ar
ned to
rappo | nd er
o be
ed w | ntere
the
ater | ed th
clos
in th | sure of
ne leve | two | isolatio
vitch an | on valve
d indica | ted a | high | | | pr
le
gl | oprox
onder
oced
vel sv
and s | nser. Óp
ures. Ti
witch on
steam le | 0239 Eneration
ne caus
the gla
vel. W | ST, the second s | nuall
his e
al ste
leve | y tripp
vent v
eam s
el switc | ed th
vas d
ysten
ch ac | e react
etermir
n that ti
tuated, | or ar
ned to
rappo
two | nd er
o be
ed w
asso | ntere
the
ater
ociate | ed th
clos
in the | sure of
ne leve
pland s | two
el sw
seal | isolatio
vitch an
steam o | on valve
d indica
drain va | ted a
lves fa | high
iled | | | pr
le
gl
or | oproxonder
oced
vel so
and so | nser. Óp
ures. Tl
witch on
steam le
nd allow | D239 Eneration
ne cause
the glangle
vel. Wed glangle | ST, the se of th | nually
his e
al ste
leve
al ste | y tripp
vent v
eam s
el switc
am to | ed th
vas d
ysten
ch ac
be di | e react
etermir
that to
tuated,
irectly r | or ar
ned to
rappo
two
route | nd er
o be
ed w
asso
ed to | ntere the ater ciate the c | ed the close in the close | sure of
ne levent
pland so
n lines | two
el sw
seal
of t | isolation
vitch and
steam of
he MFF | on valve
d indica
drain va
PT cond | ted a
lves fa
enser. | high
iled | | | pr
le
gl
or
Th | oproxonder
oced
vel so
and so
oen a | nser. Óp
ures. Tl
witch on
steam le
nd allow
lowed st | D239 Eneration
ne caus
the gla
vel. W
ed glas
eam to | ST, the se of th | nuallinis e
al ste
leve
al ste
jecte | y tripp
vent v
eam s
el switc
am to
d into | ed the vas december of the dec | e react
etermir
n that ti
tuated,
irectly r
rain flo | or ar
ned to
rappo
two
oute
w fro | nd er
o be
ed w
asso
ed to
om th | ntere the vater ociate the c | ed the close in the close decided the close th | sure of
ne leve
gland s
n lines
FPT a | two
el sw
seal
of t
nd c | isolation
vitch and
steam of
he MFF
reated | on valve
d indica
drain va
PT cond
a restric | ted a
lves fa
enser.
ted flo | high
iled
w | | | pr
le
gl
op
Th | oproxonder
oced
vel sy
and so
oen a
ondition | nser. Óp
ures. Ti
witch on
steam le
nd allow
lowed st
on beca | D239 E
peration
the gla
vel. W
ed glan
eam to
use of t | ST, the se of the second secon | nuall;
his e
al ste
al ste
jecte
eam l | y tripp
vent veam sel switch
am to
d into
bound | ed the vas decorate vas decorate value of the th | e react
etermir
n that ti
tuated,
irectly r
rain flo
ronmer | or ar
ned to
rappo
two
route
w fro
nt an | nd er
o be
ed w
asso
ed to
om th
d sul | ntere the vater ociate the cone 2A bseq | ed the close in the close decided deci | sure of
ne leve
gland s
n lines
FPT a
ntly cha | two
el sw
seal
of t
nd c
aller | isolation
vitch and
steam of
he MFF
reated
iged the | on valve
d indica
drain va
PT cond
a restric
e drain c | ted a
lves fa
enser.
ted flo
apabi | high
ailed
w
lity (| | | pr
le
gl
or
Th
co
th | oproxonder
oced
vel sv
and so
oen a
nis all
ondition | nser. Óp
ures. Ti
witch on
steam le
nd allow
lowed st
on beca
MFPT o | D239 E
peration
the gla
vel. W
ed glan
eam to
use of to
ondens | ST, the se of the second secon | nuallinis e
le leve
al ste
jecte
eam | y trippy vent vent vent vent switch switch am to dinto bound pot car | ed the vas department of the d | e react
etermin
that to
tuated,
irectly r
rain flo
ronmer
f this e | or ar
ned to
rappo
two
route
w fro
nt and
vent | nd er
o be
ed w
asso
d to
om th
d sul
was | ntere the vater ociate the c ne 2A bseq | ed the close in the close decided deci | sure of
ne leven
pland so
n lines
FPT a
ntly cha
ined to | two
el sw
seal
of t
nd c
aller
be | isolation isteam of the MFF reated and the deficient is a deficien | on valve
d indica
drain va
PT cond
a restric
e drain o
ency in | ted a
lves fa
enser.
ted flo
apabi
enford | high
ailed
w
lity c
sing | of | | pr
le
gl
op
Ti
co
th
pr | oproxonder
roced
vel sv
and soen a
nis all
ondition
e 2A
roper | nser. Op
ures. The
witch on
steam le
nd allow
lowed st
on becan
MFPT of
standar | D239 E
peration
ne caus
the gla
vel. W
ed glas
eam to
use of t
ondens
ds for s | ST, the second s | nuallinis e
la ste
la ste
lecte
jecte
eam
he ro | y trippy vent veam sel switch am to dinto bound out carroll dur | ed the vas de ystem chack be did the d | e react
etermin
that to
tuated,
irectly r
rain flo
ronmer
f this e
rork de | or ar
ned to
rappe
two
oute
w fro
nt and
vent
velor | nd er
o be
ed w
asso
ed to
om th
d sul
was
omer | ntere the vater the cone 24 bseq tdete | ed the close in the close of th | sure of
ne leve
gland s
n lines
FPT a
ntly cha
ined to
xecution | two
el sw
seal
of t
nd c
aller
o be
on. | isolation isteam of the MFF reated and deficition contracts. | on valve on valve dindica drain va off cond a restrice drain off ency in ive action | ted a
lves fa
enser.
ted flo
apabi
enford
ons ind | high
hiled
w
lity c
cing
clud | of | | pr
le
gl
op
Th
co
th
pr
re | oproxonder
oced
vel sy
and so
ondition
e 2A
oper
evising | nser. Op
ures. The
witch on
steam le
and allow
lowed st
on becan
MFPT of
standar
g the wo | D239 Eneration the cause the glaued with g | ST, the second s | nuallinus esal stelle lecterial stellecterial stellecteria | y trippy vent vent vent vent vent switch sam to dinto bound oot carrol dures proc | ed the vas dependent of the | e react
etermin
that to
tuated,
irectly r
rain flo
ronmer
f this e
vork de
e to stre | or ar
ned to
rappe
two
oute
w fro
to
vent
velor
velor | nd er
o be
ed w
asso
om th
d sul
was
omer
nen s | ntere the dater the cone 24 bseq to dete | ed the close in the close of th | sure of
ne leve
gland s
n lines
FPT a
ntly cha
ined to
xecution | two
el sw
seal
of t
nd c
aller
o be
on. | isolation isteam of the MFF reated and deficition contracts. | on valve on valve dindica drain va off cond a restrice drain off ency in ive action | ted a
lves fa
enser.
ted flo
apabi
enford
ons ind | high
hiled
w
lity c
cing
clud | of | | pr
le
gl
op
Th
co
th
pr
re | oproxonder
oced
vel sy
and so
ondition
e 2A
oper
evising | nser. Op
ures. The
witch on
steam le
nd allow
lowed st
on becan
MFPT of
standar | D239 Eneration the cause the glaued with g | ST, the second s | nuallinus esal stelle lecterial stellecterial stellecteria | y trippy vent vent vent vent vent switch sam to dinto bound oot carrol dures proc | ed the vas dependent of the | e react
etermin
that to
tuated,
irectly r
rain flo
ronmer
f this e
vork de
e to stre | or ar
ned to
rappe
two
oute
w fro
to
vent
velor
velor | nd er
o be
ed w
asso
om th
d sul
was
omer
nen s | ntere the dater the cone 24 bseq to dete | ed the close in the close of th | sure of
ne leve
gland s
n lines
FPT a
ntly cha
ined to
xecution | two
el sw
seal
of t
nd c
aller
o be
on. | isolation isteam of the MFF reated and deficition contracts. | on valve on valve dindica drain va off cond a restrice drain off ency in ive action | ted a
lves fa
enser.
ted flo
apabi
enford
ons ind | high
hiled
w
lity c
cing
clud | of | | pr
le
gl
op
Th
co
th
pr
re | oproxonder
oced
vel sy
and so
ondition
e 2A
oper
evising | nser. Op
ures. The
witch on
steam le
and allow
lowed st
on becan
MFPT of
standar
g the wo | D239 Eneration the cause the glaued with g | ST, the second s | nuallinus esal stelle lecterial stellecterial stellecteria | y trippy vent vent vent vent vent switch sam to dinto bound oot carrol dures proc | ed the vas dependent of the | e react
etermin
that to
tuated,
irectly r
rain flo
ronmer
f this e
vork de
e to stre | or ar
ned to
rappe
two
oute
w fro
to
vent
velor
velor | nd er
o be
ed w
asso
om th
d sul
was
omer
nen s | ntere the dater the cone 24 bseq to dete | ed the close in the close of th | sure of
ne leve
gland s
n lines
FPT a
ntly cha
ined to
xecution | two
el sw
seal
of t
nd c
aller
o be
on. | isolation isteam of the MFF reated and deficition contracts. | on valve on valve dindica drain va off cond a restrice drain off ency in ive action | ted a
lves fa
enser.
ted flo
apabi
enford
ons ind | high
hiled
w
lity c
cing
clud | of | NRC FORM 366A (9-2007) U.S. NUCLEAR REGULATORY COMMISSION # LICENSEE EVENT REPORT (LER) | 1 | 1. FACILITY NAME | 2. DOCKET | 6. LER NUMBER | | | 3. PAGE | |----|-------------------------------------|-----------|---------------|----------------------|----------|---------| | | Sequoyah Nuclear Plant (SQN) Unit 2 | 05000328 | YEAR | SEQUENTIAL
NUMBER | REVISION | 2 OF 5 | | ** | | | 2009 002 00 | | ; | | ^{17.} NARRATIVE (If more space is required, use additional copies of NRC Form 366A) # I. PLANT CONDITION(S) Unit 2 was operating at approximately 30 percent power during power ascension following the Unit 2 Cycle 16 refueling outage. #### II. DESCRIPTION OF EVENT #### A. Event: On November 26, 2009, at 0242 Eastern standard time (EST), SQN Unit 2 reactor was manually tripped following an indication of degrading main feedwater pump turbine (MFPT) condenser [EIIS Code SG] vacuum. At approximately 0239 EST, the shift manager was notified of indications of a degrading vacuum in the 2A MFPT condenser. At approximately 0242, the 2A MFPT condenser indicated positive pressure with a corresponding condensate saturation temperature. Based on indications of positive pressure in the 2A MFPT condenser and degrading vacuum in the 2B MFPT condenser, a reactor trip was directed by the shift manager. Operations personnel entered the applicable emergency procedures. B. Inoperable Structures, Components, or Systems that Contributed to the Event: None. C. Dates and Approximate Times of Major Occurrences: Date Description November 26, 2009, at 0239 EST The Operations shift manager was notified of indications of degrading vacuum in the 2A MFPT condenser. This condition was followed by indications of a degrading vacuum in the 2B MFPT condenser. November 26, 2009, at 0242 EST Operations initiated a manual reactor trip and entered at 0242 EST emergency operation procedures. D. Other Systems or Secondary Functions Affected: No other systems or secondary functions were affected by this event. ## LICENSEE EVENT REPORT (LER) | | 1. FACILITY NAME | 2. DOCKET | 6. LER NUMBER | | | 3. PAGE | |---|-------------------------------------|-----------|---------------|------------------------|----------|---------| | | Sequoyah Nuclear Plant (SQN) Unit 2 | 05000328 | YEAR | SEQUENTIAL
NUMBER : | REVISION | 3 OF 5 | | 1 | | | 2009 - | - 002 | 00 | | ^{17.} NARRATIVE (If more space is required, use additional copies of NRC Form 366A) ## E. Method of Discovery: On November 26, 2009, at approximately 0239 EST, the Operations unit supervisor notified the shift manager of degrading vacuum in the 2A MFPT condenser. ## F. Operator Actions: Based on a positive pressure in the 2A MFPT condenser and a degrading vacuum in the 2B MFPT condenser, a reactor trip was directed by the shift manager. ## G. Safety System Responses: The safety systems performed as designed for the reactor trip. Auxiliary feedwater [EIIS Code BA] automatically initiated following the reactor trip. At approximately seven minutes after the trip, flow was reduced to mitigate the decrease in reactor coolant system average temperature and recover steam generator levels. All safety systems remained within technical specifications (TS) and Updated Final Safety Analysis Report (UFSAR) limits. #### III. CAUSE OF THE EVENT ### A. Immediate Cause: The immediate cause of this event was failure to properly implement procedure use and adherence. This resulted in an incorrect valve configuration for the gland seal steam level switch. #### B. Root Cause: The root cause of this event was determined to be a deficiency in enforcing proper standards for status control during work package development and execution. A technically inaccurate preventative maintenance procedure caused a valve configuration control problem with the associated work package. If proper standards concerning status control had been understood and executed during work package development and execution, the procedure would have been corrected and the event would not have occurred. ## C. Contributing Factor: Plant personnel failed to utilize proper procedure use and adherence fundamentals. (9-2007) # LICENSEE EVENT REPORT (LER) | 1. FACILITY NAME | 2. DOCKET | 6. LER NUMBER | | | 3. PAGE | |-------------------------------------|-----------|---------------|----------------------|----------|---------| | Sequoyah Nuclear Plant (SQN) Unit 2 | 05000328 | YEAR | SEQUENTIAL
NUMBER | REVISION | 4 OF 5 | | | | 2009 - | 002 00 | | | ^{17.} NARRATIVE (If more space is required, use additional copies of NRC Form 366A) #### IV. ANALYSIS OF THE EVENT Unit 2 was operating in Mode 1 at approximately 30 percent power during power ascension following the Unit 2 Cycle 16 refueling outage. Prior to the event, the reactor coolant system (RCS) [EIIS Code AB] pressure was approximately 2235 pounds per square inch gauge (psig). Following the reactor trip, RCS pressure rapidly decreased because of the decreasing RCS average temperature and the associated shrinking of coolant volume. The minimum RCS pressure following the trip was approximately 2168 psig, which is well above the pressure that would have initiated a safety injection signal. The RCS temperature following the trip remained within TS limits. The minimum pressurizer level following the reactor trip was approximately 19 percent, above the level of the pressurizer heaters. The plant response was expected because of the low initial power level and low decay heat as the plant was in power ascension from a refueling outage. No TS limits were exceeded and the UFSAR analysis of this event remained bounding. ### V. ASSESSMENT OF SAFETY CONSEQUENCES Based on the above "Analysis of The Event," this event did not adversely affect the health and safety of plant personnel or the general public. ### VI. CORRECTIVE ACTIONS #### A. Immediate Corrective Actions: Corrective actions included opening the two closed isolation valves for the level switch on the gland seal steam system and performing an extent of condition walkdown of valves on selected systems to verify proper valve positioning. B. Corrective Actions to Prevent Recurrence: The corrective actions are being managed by the Sequoyah Nuclear Plant Corrective Action Program. Revise the procedure that governs status control to strengthen requirements such that planning and the review process assures that status control is adhered to in work packages. Develop and implement additional personnel training for procedures that govern work package development and expectations regarding status control. (9-2007) ## LICENSEE EVENT REPORT (LER) | | 1. FACILITY NAME | 2. DOCKET | 6. LER NUMBER | | | 3. PAGE | |---|-------------------------------------|-----------|---------------|-------------------------|----------|---------| | 1 | Sequoyah Nuclear Plant (SQN) Unit 2 | 05000328 | YEAR | SEQUENTIAL
'NUMBER 1 | REVISION | 5 OF 5 | | | | | 2009 002 00 | | | | 17. NARRATIVE (If more space is required, use additional copies of NRC Form 366A) ### VII. ADDITIONAL INFORMATION A. Failed Components: None. B. Previous LERs on Similar Events: A review of previous reportable events within the last three years did not identify any previous similar events. C. Additional Information: None. D. Safety System Functional Failure: This event did not result in a safety system functional failure in accordance with 10 CFR 50.73(a)(2)(v). E. Unplanned Scram with Complications: This condition did not result in an unplanned scram with complications. ### VIII. COMMITMENTS None.